Mutations that alter the covalent modification of glutamine synthetase in Salmonella typhimurium.
نویسندگان
چکیده
glnD and glnE mutant strains of Salmonella typhimurium lack three of the four activities required for reversible covalent modification of glutamine synthetase (GS; EC 6.3.1.2). The glnD strains, which are unable to deadenylylate GS and therefore accumulate the adenylylated or less active form of the enzyme, were isolated as glutamine bradytrophs. They lack the activity of PIIA uridylyl-transferase, one of the proteins required for deadenylylation of GS; in addition, they lack PIID uridylyl-removing activity. Mutations in glnD are suppressed by second-site mutations in glnE that eliminate the activity of GS adenylyltransferase (EC 2.7.7.42) and thus prevent adenylylation of GS. The glnD and glnE strains have one-third to one-half as much total GS as the wild-type strain when they are grown in a medium containing a high concentration of NH4+. The wild-type strain derepresses synthesis of GS fourfold in response to nitrogen limitation; glnD and glnE strains derepress synthesis of the enzyme fourfold and sevenfold, respectively. Thus, mutations that alter covalent modification of GS in Salmonella do not significantly affect derepression of its synthesis. The glnD gene lies at 7 min on the Salmonella chromosome and is 50% linked to pyrH by P22-mediated transduction.
منابع مشابه
Characterization of Salmonella typhimurium mutants with altered glutamine synthetase activity.
A number of glutamine auxotrophs of Salmonella typhimurium were isolated and characterized genetically. Three of the mutations appear to be closely linked and are complemented by episomes carrying the glnA region of Escherichia coli. The lesions in these strains are approximately 20% linked by P1 transduction with a mutation in the rha gene, but are unlinked to ilv. Another mutation causing glu...
متن کاملInteractions of nucleotides with fully unadenylylated glutamine synthetase from Salmonella typhimurium.
Glutamine synthetase (GS) catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia in the presence of divalent cations. To gain insight into the structural basis of the feedback inhibition of GS by AMP, we have studied crystal structures of GS complexes with AMP and the related molecules: AMPPNP (a less hydrolyzable ATP analog), ADP, GDP, adenosine, and adenine. AMP is a...
متن کاملL-Methionine SR-sulfoximine-resistant glutamine synthetase from mutants of Salmonella typhimurium.
Two mutants of Salmonella typhimurium resistant to growth inhibition by the glutamine synthetase transition state analog, L-methionine SR-sulfoximine, were isolated and characterized. These mutants are glutamine bradytrophs and cannot use growth rate-limiting nitrogen sources. Although this phenotype resembles that of mutants with lesions in the regulatory gene for glutamine synthetase, glnG, t...
متن کاملGlutamine auxotrophs of Bacillus subtilis that overproduce glutamine synthetase antigen have altered conserved amino acids in or near the active site.
A number of mutations within the Bacillus subtilis glutamine synthetase (GS) gene result in altered catalytic properties and overproduction of the GS antigen. The restriction fragments containing mutations from three such mutants were sequenced, and they all had amino acid changes in conserved residues found either within or near sequences contributing to the active site of the Salmonella typhi...
متن کاملNucleotidylation, not phosphorylation, is the major source of the phosphotyrosine detected in enteric bacteria.
The majority of the phosphotyrosine recovered from partial acid hydrolysates of 32P-labeled Escherichia coli is derived from a single prominent protein. We show here by biochemical, genetic, and immunological criteria that this protein is actually glutamine synthetase adenylylated (not phosphorylated) at tyrosine. Furthermore, all of the phosphotyrosine detectable in partial acid hydrolysates o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 134 3 شماره
صفحات -
تاریخ انتشار 1978